|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectfhm.edu.fem.calc.objects.algorithm.SVI1
public class SVI1
Class Description: This class offers methods to calculate Eigenvalues and Eigenvectors via the SVI1 Algorithm. The algorithms used in this class are Copyright by Ewe Leonties taken from the C-Classes he wrote as diploma thesis. The conversion to Java and the percentage displays have been done by the authors mentioned below.
Field Summary | |
---|---|
protected Vector |
eigenvalueVector
|
protected static Logger |
localLogger
|
protected double[][] |
X
|
Constructor Summary | |
---|---|
SVI1()
Constructor |
Method Summary | |
---|---|
protected void |
asch(int p,
int n,
double[][] Z,
double[][] Y,
double[][] AS)
Multiplies the matrices ZT * Y = AS |
protected void |
bxvb(int p,
int n,
double[] B,
int[] D,
double[][] X,
double[][] VB)
Multiplies the matrices X * B = VB |
protected int |
cholesky(int n,
double[] A,
int[] D)
Calculate the Cholesky (by Ewe Leonties) A is changed in the progress containing the result |
boolean |
compute(int n,
double[] LA,
double[] B,
int[] D,
int p1,
int p2,
double tol,
int maxit)
Simultane vector-iteration to solve A*x=lam*B*x |
Vector |
getEigenvalueVector()
Grab the vector holding the calculated eigenvalues (you need to call compute()) first |
double[][] |
getEigenvectorArray()
Grab the double array holding the calculated eigenvectors (you need to call compute()) first |
protected void |
initx(int p,
int n,
double[][] X)
Init the Matrix X with random numbers 0 <= xij <= 1 |
protected void |
jacobi(int n,
double gen,
double[][] A,
double[][] V,
int ord)
Calculates the Eigenvalues and Eigenvectors of the symmetric Matrix A |
protected void |
mvrenv(int n,
int p,
double[] L,
int[] D,
double[][] B,
double[][] X)
Solves the matrix calculation L * LT * X = B via "Vorwaerts- und Rueckwaertseinsetzen" |
protected void |
zgkdkz(int p,
int n,
double[][] Z,
double[][] G,
double[][] D,
double[][] H)
Multiplies the matrices Z * G * D = X |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
---|
protected Vector eigenvalueVector
protected static Logger localLogger
protected double[][] X
Constructor Detail |
---|
public SVI1()
Method Detail |
---|
protected void asch(int p, int n, double[][] Z, double[][] Y, double[][] AS)
p,
- dimension of Yn,
- dimension of YZ,
- the matrix ZY,
- the matrix YAS,
- RETURN VALUEprotected void bxvb(int p, int n, double[] B, int[] D, double[][] X, double[][] VB)
p,
- dimension of Xn,
- dimension of XB,
- matrix B in HullMatrix styleD,
- diagonal pointer vectorX,
- Iteration-Vector-MatrixVB,
- RETURN VALUE, Product-Matrixprotected int cholesky(int n, double[] A, int[] D)
n,
- size of Matrix AA,
- Matrix A in HullMatrix styleD,
- diagonal pointer vector
public boolean compute(int n, double[] LA, double[] B, int[] D, int p1, int p2, double tol, int maxit)
n,
- dimension of matrixLA,
- Matrix A in HullMatrix styleB,
- Matrix B in HullMatrix styleD,
- diagonal pointer vectorp1,
- needed amount of eigenvectorsp2,
- simultane iterated eigenvectorstol,
- calculation precisionmaxit,
- maximum number of steps
public Vector getEigenvalueVector()
public double[][] getEigenvectorArray()
protected void initx(int p, int n, double[][] X)
p,
- the dimension of Xn,
- the dimension of XX,
- RETURN VALUE, linear independent start vectorsprotected void jacobi(int n, double gen, double[][] A, double[][] V, int ord)
n,
- size of Matrix Agen,
- machine precisionA,
- double[][] array of Matrix AV,
- RETURN VALUE, matrix of eigenvectorsord,
- if >0 the eigenvalues and associated eigenvectors are sorted from upwards, else downwardsprotected void mvrenv(int n, int p, double[] L, int[] D, double[][] B, double[][] X)
n,
- dimension of Xp,
- dimension of XL,
- left-triangle-matrix in HullMatrix styleD,
- diagonal pointer vectorB,
- right side matrixX,
- RETURN VALUEprotected void zgkdkz(int p, int n, double[][] Z, double[][] G, double[][] D, double[][] H)
p,
- dimension of Zn,
- dimension of ZZ,
- nxpG,
- pxpD,
- diagonalmatrix pxpH,
- RETURN VALUE
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |