
About Portable Keyboards
with Design and Implementation
of a Prototype Using Image Processing

Thomas Wöllert (Dipl.-Inf. (FH))

Matriculationno. 05478901-0199
Semestergroup IG2

Semester Thesis SS2006
Human-Machine-Interaction

Master of Science
Computer Graphics and Image Processing

Department of Computer Science and Mathematics
Munich University of Applied Sciences

Unsichtbarer Text, damit das Zitat in die Mitte der Seite gerückt werden kann.

„Your program does not do
the things you thought it would

but the things you programmed ...“

anonymous

Abstract

Type: Semester Thesis
Author: Wöllert, Thomas (Dipl.-Inf. (FH))
Titel: About Portable Keyboards with Design and Implementation

of a Prototype Using Image Processing

Date: 1st June 2006
Number of Pages: 40

Field of Study: Master of Science - Computer Graphics and Image Processing
University: Munich University of Applied Sciences, Germany
Advisor: Prof. Dr. G. Socher

With the hardware getting smaller and smaller it sometimes seems, that todays keyboards
are a bit left behind by the development. PDAs and cellphones are close to being a complete
personal computer, but controlling such devices often relies on over-sized keyboards. Over
the last years some advances have been made in portable keyboard design more, or less giving
up the original keyboard-look to earn other advantages.

The first part of this thesis provides an overview of the current state of development regarding
portable keyboards. Various examples like rollable keyboards, touchscreens, interactive gloves
and miniature keyboards are presented, all with their specific advantages and drawbacks. A
specific example, the Celluon projection keyboard by Canesta Inc., is explained in more detail.

After the introduction, the second part focuses on the prototype design and implementation
of a virtual keyboard using image processing. The technical basics are presented leading to
requirements both for software, hardware and the implementation. Testing this prototype as
well as discussing the results completes this part of the document.

Finally the last part gives a summary of the gathered results as well as an outlook on future
developments.

Keywords: projection keyboard, virtual keyboard, Java, JMF, JDMS, DirectShow, webcam,
gui, camera, image processing, blob coloring algorithm

Contents

Abstract ii

List of Figures v

List of Tables vi

List of Sources vii

1 Introduction 1

1.1 Task . 1

1.2 Motivation . 1

1.3 Overview . 2

2 Latest Developments in Portable Keyboards 3

2.1 Industrial Examples . 3

2.1.1 Foldable Keyboards . 3

2.1.2 Miniature Keyboards . 4

2.1.3 Touchscreens . 5

2.1.4 Glove Keyboard . 6

2.2 Celluon Projection Keyboard . 7

2.2.1 Technical Data . 7

2.2.2 Applications . 8

iii

CONTENTS iv

3 Implementation of a Prototype Virtual Keyboard 9

3.1 Technical Basics . 9

3.1.1 Threshold Detection . 10

3.1.2 Overview Detection . 10

3.1.3 Camera Hardware . 11

3.2 Programming Language and Software . 11

3.3 Camera Setup . 11

3.3.1 Problems - Microsoft Windows XP . 11

3.3.2 Problems - Sun Java Virtual Machine 12

3.4 Design . 12

3.4.1 Requirements Analysis . 13

3.4.2 Image Processing Algorithms . 14

3.5 Implementation . 17

3.5.1 Additional Software - log4j . 17

3.5.2 Camera Usage . 17

3.5.3 Configuration Management . 18

3.5.4 User Interface . 18

3.5.5 Image Processing . 21

3.6 Tests and Results . 26

4 Conclusions 28

4.1 Review . 28

4.2 Results . 28

4.3 Future Work and Developments . 29

Bibliography 30

Abbreviations 32

Glossary 32

List of Figures

1.1 Keyboard, Push-Buttons, and Mouse, 1960s at Stanford Research Institute [4] 2

2.1 Bluetooth textile keyboard (Courtesy of Eleksen) 4

2.2 Bluetooth Freedom Mini Keyboard (with cellphone) (Courtesy of Hama) . . . 4

2.3 Touchscreen Garmin StreetPilot 2660 [9] . 5

2.4 Touchscreen Kiosk Mode - Internet Browser Software [10] 5

2.5 KITTY usage Example (Courtesy of KITTY Technologies) 6

2.6 KITTY Glove Prototype (Courtesy of KITTY Technologies) 6

2.7 Celluon usage Example (Courtesy of Canesta Inc.) 7

2.8 Celluon Hardware (Courtesy of Canesta Inc.) 8

2.9 Celluon usage Example (Courtesy of Canesta Inc.) 8

2.10 Siemens New Interactive Phone (Courtesy of Siemens) 8

3.1 Threshold Detection - Camera Placement . 10

3.2 Overview Detection - Camera Placement . 10

3.3 Logitech QuickCam Express (Courtesy of Logitech) 11

3.4 Webcam Picture of the Light-pen used for Detection 14

3.5 Colour Tracker: Detecting a blue Ball (Courtesy of David Bull) 15

3.6 Blob Coloring Algorithm: „backwards L“ shaped Template 16

3.7 Blob Coloring Algorithm: Equivalent Region Problem 17

3.8 User Interface - Main Frame . 19

3.9 User interface - Configuration Threshold Dialog (excl. live-preview) 19

3.10 User Interface - Configuration Overview Dialog (excl. live-preview) 20

3.11 User Interface - BorderImageWorker Example 22

3.12 User Interface - ColorImageWorker Example 22

3.13 User Interface - ThresholdImageProcessor Example 25

3.14 User Interface - OverviewImageProcessor Example 26

3.15 User Interface - Detection Test . 27

v

List of Tables

3.1 Implementation - Blob Coloring Algorithm - Region equivalence Map 23

3.2 Implementation - Blob Coloring Algorithm - Region equivalence Trees 24

3.3 Implementation - Blob Coloring Algorithm - Equivalence Table before and after
flattening . 24

vi

List of Sources

3.1 Implementation - Treshold Camera Config File 18

vii

Chapter 1

Introduction

In the context of the course Human-Machine-Interaction, one focus was set upon portable
input devices, especially keyboards. With the hardware getting smaller and smaller it some-
times seems that todays keyboards are a bit left behind by the development. PDAs and
cellphones are close to being a complete personal computer, but controlling such devices often
relies on over-sized keyboards. Over the last years some advances have been made in portable
keyboard design, more or less giving up the original keyboard-look to earn other advantages.

1.1 Task

The first objective was to get an overview over the latest developments in portable keyboards.
One of these developments, the Celluon [3] projection keyboard by Canesta Inc. [2], should
be examined in more detail.

Due to the focus lying on the projection keyboard, the decision was made to implement a
prototype virtual keyboard as practical part of this thesis. Webcams were chosen to record
the users movement gathering the necessary information via digital image processing.

1.2 Motivation

Looking at the common computer desktop, people are usually astonished by the fast advances,
which are made not only in comfort and usability but also in getting the devices even smaller
than the day before. Looking closer, it is not surprising, that someone must also wonder, why
the most up-to-date keyboard is almost looking like the first one, developed decades ago (see
Fig. 1.1).

Complete keyboards are still needed for comfortable control of a computer. On some note-
books it is already a drawback, that the keyboard is smaller than normal, resulting in user

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Keyboard, Push-Buttons, and Mouse, 1960s at Stanford Research Institute [4]

errors and discomfort. So the question is, how it is possible to make the keyboard small
enough to keep holding up with todays small hardware.

1.3 Overview

The first part of this thesis provides an overview of the current state of development regarding
portable keyboards. Various examples like rollable keyboards, touchscreens, interactive gloves
and miniature keyboards are presented, all with their specific advantages and drawbacks. A
specific example, the Celluon projection keyboard by Canesta Inc., is explained in more detail.

After the introduction, the second part focuses on the prototype design and implementation
of a virtual keyboard using image processing. The technical basics are presented leading to
requirements both for software, hardware and the implementation. Testing this prototype as
well as discussing the results completes this part of the document.

At the end, the last part gives a summary of the gathered results as well as an outlook to
future developments.

Chapter 2

Latest Developments in Portable

Keyboards

The normal user at home is often not aware of new technical developments, so giving an
overview of the current technology in portable keyboards had to be made. Due to time
limitations this summary is done by giving examples of industrial products available today as
well as the mentioned Celluon projection keyboard.

2.1 Industrial Examples

Todays industrial products can be divided into two categories: products ,that keep the basic
look of keyboards and those, giving up this nature for better portability and usability in
the desired environment. The following list is far from being complete, but gives a good
impression of what is possible and available on the market today.

2.1.1 Foldable Keyboards

A direct approach to address the portability problem was to keep the layout of a normal
keyboard and simply make it foldable. This includes automatically all the keyboard’s usability
advantages and offers the customers a piece of hardware they know from their keyboard at
home.

As an example Eleksen Ltd. [5] is currently offering a textile keyboard, which connects to
a desktop computer, PDA or cellphone via bluetooth. Including a small battery pack, this
enables the user to work normally for up to ten hours [6] (see Fig. 2.1).

Like already mentioned the layout is very similar to normal desktop keyboards. This enables
the user to work as he or she is accustomed to, without the need to learn using a new

3

CHAPTER 2. LATEST DEVELOPMENTS IN PORTABLE KEYBOARDS 4

Figure 2.1: Bluetooth textile keyboard (Courtesy of Eleksen)

input device from scratch. This advantage is also the devices’ drawback, because due to the
dimensions of such keyboards, they still take some space in the pocket, even when folded.
Additionally people still need some amount of space when using the keyboard, which might
be a problem during portable situations (i.e. in the train, bus or plane).

2.1.2 Miniature Keyboards

The next kind of keyboard gives up some of the advantages of normal dimensions and layout
for better portability. The following example is currently produced by Hama GmbH & Co.
KG [7]. The Bluetooth Freedom Mini Keyboard [8] (see Fig. 2.2) is considerably smaller than
normal keyboards, but still offers thirtynine keys and connects to its host device via bluetooth.

Figure 2.2: Bluetooth Freedom Mini Keyboard (with cellphone) (Courtesy of Hama)

As visible in Fig. 2.2 doing extensive work with such a small keyboard is not really possible.
It is surely valuable for short periods of time and small amounts of text but the usability is
suffering a lot from the small keys. Additonally the user has to get used to the new layout,
which might result in some difficulties.

CHAPTER 2. LATEST DEVELOPMENTS IN PORTABLE KEYBOARDS 5

2.1.3 Touchscreens

By totally giving up the look of keyboards, touchscreens gain a lot of advantages. Their
usage is mouse-like more intuitive by simply pressing onto the screen. Also due to their
digital nature touchscreens can adapt their layout to the actual program situation i.e. by
hiding some buttons which are not necessary. Due to that they are often used in embedded
environments (i.e. car navigation systems, see Fig. 2.3).

Figure 2.3: Touchscreen Garmin StreetPilot 2660 [9]

In some cities using the internet is possible via public terminals i.e. at subway or train
stations. Due to their public nature these touchscreens are normally protected with special
glass making it impossible to place a normal keyboard there. In addition hygienic reasons
also render a normal keyboard impractical. As a replacement the computer is simulating the
whole keyboard in the lower part of the screen (see Fig. 2.4), where the user can access it via
touch screen.

Figure 2.4: Touchscreen Kiosk Mode - Internet Browser Software [10]

As seen in Fig. 2.4 offering a normal-sized keyboard layout on a touchscreen takes up a signif-
icant amount of space. The dimension of the touchscreen itself (i.e. PDAs) also restricts the

CHAPTER 2. LATEST DEVELOPMENTS IN PORTABLE KEYBOARDS 6

size of the keyboard, which renders such setups impossible for small portable devices. Some
companies have tried to remedy this drawback by exchanging the keys with software algo-
rithms transforming written into digital letters. Still the usability in writing longer documents
is as limited as if using miniature keyboards (see Sec. 2.1.2).

2.1.4 Glove Keyboard

Some advances have been made in totally replacing the keyboard with a new input device.
Focused in the portability and the problem, that the user might not have a plain area to lie
out a keyboard, the developers based their design on gloves. These are currently developed by
KITTY Technologies see [11]. Technically the gloves are based on the same idea as keyboards:
By connecting two wires a signal is generated, representing a specific key. On the keyboard
this is done by actually pressing the key. The glove is accomplishing the same goal by placing
the wires on the outside of the fingers. The user now has to connect two fingers at pre-defined
positions to produce a certain key stroke (see Fig. 2.5). In the shown example the user
produces a ’g’ by pressing the forefinger onto the mid sensor of his left-hand thumb [1].

Figure 2.5: KITTY usage Example (Courtesy of KITTY Technologies)

Figure 2.6: KITTY Glove Prototype (Courtesy of KITTY Technologies)

This approach offers significant advantages in portability and usability. The major drawback
is, that users have to learn a new input device, which is totally different from traditional
approaches like keyboard and mouse.

CHAPTER 2. LATEST DEVELOPMENTS IN PORTABLE KEYBOARDS 7

2.2 Celluon Projection Keyboard

As already mentioned a more detailed focus was set upon the Celluon projection keyboard
produced by Canesta Inc. The idea was to remove the bulky hardware replacing the keyboard
itself by a projected image. As seen in Fig. 2.7 the device consists solely of a small tower
placed in front of the user. When he/she starts typing on this projected image the tower
is registrating the key strokes transferring the information to the connected host device (i.e.
PDA, cellphone).

Figure 2.7: Celluon usage Example (Courtesy of Canesta Inc.)

2.2.1 Technical Data

The following description of the technical data is somehow basic, but it was not possible to
get any more detailed information due to the patents associated with the Celluon keyboard.

The Celluon device consists of three different parts stored in the tower (see Fig. 2.8). A red
laser diode (pattern projector) in the top of the tower projects the keyboard layout onto the
table in front of it. Detecting the key strokes is taken care of by the sensor module. In order
to actually „see“ the user typing the sensor is supported by an IR light source at the bottom
of the tower. This emitted IR light can be seen by the sensor, when it hits the fingers of the
user (see Fig. 2.9). The whole detection process is simplified and speed up by the fact, that,
due to the IR detection, no image processing or gesture recognition is needed.

Celluon buys its advantages with some grave disadvantages, i.e. in the production process.
Adjusting the keyboard to other country layouts is not simply done by repainting the keys,
but must be incorporated into the pattern projector. Reading the manual revealed some
weaknesses of the design: The battery package can only support the device for up to 220
minutes of continuous use. Due to the nature of projection the visibility of the keyboard
might not be enough for a working environment under normal light conditions. It also shares
the same problem as the foldable keyboard (see Sec. 2.1.1) when it comes to the needed plain
surface. The Celluon even has more surface requirements, as it needs one as flat as possible
and non-reflective for the detection to work.

CHAPTER 2. LATEST DEVELOPMENTS IN PORTABLE KEYBOARDS 8

Figure 2.8: Celluon Hardware (Courtesy of Canesta Inc.)

Figure 2.9: Celluon usage Example (Courtesy of Canesta Inc.)

2.2.2 Applications

Customers can already buy the Celluon tower but the more interesting aspect of this product
is to incorporate it in existing portable devices like cellphones. Possible applications have
been shown on the CeBIT 2005 in Germany [12]. Siemens invested some effort to implement
the Celluon into a new cellphone prototype (see Fig. 2.10).

Figure 2.10: Siemens New Interactive Phone (Courtesy of Siemens)

Chapter 3

Implementation of a Prototype

Virtual Keyboard

The last chapters gave some insight in the field of portable keyboards focusing on the Celluon
projection keyboard. The next step was to design and implement a prototype of a virtual
keyboard.

3.1 Technical Basics

It was clear from the beginning, that the same approach as the Celluon could not be matched
in this thesis. The needed laser diode together with the pattern projector could not be
replicated and the algorithms used in the detection processes were unknown too. So only the
basic design was kept, but with new hardware components taking the roles of the projector,
sensor and IR light source.

The projection problem was solved by a very simple measure: As the result should only be
a prototype with the main focus on the detection process, the projection was replaced by a
drawn keyboard on a sheet of paper.

Now the detection problem could be broken down into two different areas:

• Threshold detection: When did the user hit a key?

• Overview detection: Which key did the user hit?

9

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 10

3.1.1 Threshold Detection

To stay as close as possible to the usual way a keyboard is used, the moment a key is hit has
been defined by the moment the user puts his/her finger down onto the surface. In order to
detect the height of the finger above the surface a camera must be placed on one side of the
keyboard, having a looking angle of zero degrees (see Fig. 3.1). Moving the camera up higher
would result in detection errors. Now it was possible to define a simple area causing an alarm
in case the user moves his/her finger into that area, which would then count as „key pressed“.

Figure 3.1: Threshold Detection - Camera Placement

3.1.2 Overview Detection

Now with the camera placed on the side of the keyboard area also using it to detect, which key
has been hit, was not possible. Optimal requirements for this detection would be an image of
the keyboard area made from the top, the moment the user’s finger hits the surface. In order
to solve this problem a second camera was needed placed in an upper position looking down
onto the virtual keyboard (see Fig. 3.2). Now simple rectangle areas could be defined acting
as virtual keys.

Figure 3.2: Overview Detection - Camera Placement

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 11

3.1.3 Camera Hardware

A single Logitech QuickCam Express [13] (see Fig. 3.3) webcam was already available. Being
cheap, small and offering a good image quality buying the same model as second camera was
a logical choice:

Resolution max. 640x480 pixel
Colorsystem RGB or YUV
Framerate up to 30 frames per second

Figure 3.3: Logitech QuickCam Express (Courtesy of Logitech)

3.2 Programming Language and Software

In order to avoid platfrom-specific implementations Java in its newest version 6.0 [15] was cho-
sen as programming language. This decision was also backed up by the extensible knowledge
in Java already present especially in creating graphical user interfaces.

To ease up the programming and compilation of the sources, the free Eclipse Project version
3.1 [18] was used as development environment.

3.3 Camera Setup

Initializing and running both cameras turned out to be more problematic than expected, due
to shortcomings within Microsoft Windows XP and the Sun Java Virtual Machine.

3.3.1 Problems - Microsoft Windows XP

Microsoft Windows XP was able to detect both USB cameras, but proved to be unable to run
them at the same time. It seems that using the same camera is something either Windows or

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 12

the camera driver did not understand. A test with a different older webcam turned out to be
successfull when running both at the same time.

Doing another review of the detection process revealed, that simultaneously running both
cameras is not necessary. Only one camera needs to run at startup determining, when the
user has crossed the „key pressed“-threshold. As soon as the threshold alarm is generated, the
first camera can be disabled. Activating the second camera one single picture can be taken
and examined. Now the threshold camera can be reactivated waiting for more key strokes.

3.3.2 Problems - Sun Java Virtual Machine

The standard Java Development Kit [14] is by default not able to access cameras. Supporting
these functions Sun developed the Java Media Framework (JMF) [16].

First attempts to access one of the webcams displaying their video stream proved to be
successful. Setbacks started when trying to access the second webcam (this did not involve
both cameras running at the same time). JMF is accessing webcams via an older Video for
Windows (VfW) implementation, which is acting as control interface for the camera. A short
research discovered, that Video for Windows is only supporting one device at a time. This
would actually not be a problem because just one webcam needs to run at the same time, but
switching from one webcam to the other within VfW was not possible. VfW is able to access
the first webcam plugged into the system, all others are ignored. JMF did not offer any other
way of accessing external cameras and Sun stopped the development, so the idea of using it
was discarded.

Research revealed, that Windows is offering another more up-to-date interface to access exter-
nal cameras called DirectShow which is a part of Microsoft DirectX. Now the problem shifted
to the fact, that DirectX is only accessible by changing the programming language to C++
using Microsoft Visual Studio. Some developers already had the same problem and saw the
necessity to write a DirectShow interface for Java called Java Media DirectShow (JMDS) [17].
Using this project as a basis, it was possible to control and switch between both cameras.
Further tests also included running the two webcams at the same time again, but this always
resulted in fatal crashes of the Java Virtual Machine.

3.4 Design

Having selected a programming language, development environment and initialized the cam-
eras, it was now possible to start the application’s design process. The taken steps are
described in the following sections giving an overview of the requirements for the hardware
configuration as well as the user interface and the needed image processing algorithms.

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 13

3.4.1 Requirements Analysis

Like for any software project laying out the basic requirements of the application to create is
a necessity. These requirements included guidelines for creating the user interface as well as
important subjects for the detection algorithm and hardware configuration.

Requirements - Hardware configuration

As described in sections 3.1.1 and 3.1.2 each camera had to be configured individually for its
specific task. Before describing the needs for the detection in particular, the following list
contains features needed by both detection tasks:

Common for both Detections

• Choosing the correct camera

• Setting the camera format (colors, resolution, framerate, etc.)

More specific needs are described in the following paragraphs:

Threshold Detection

• Lower detection height threshold

• Upper detection height threshold

• Show/Hide visualization of the detection area

• Adjust the detection parameters (determined by the used image processing algorithm)

• Enable/Disable the detection

Overview Detection

• Management of the detection areas acting as keys (create, delete, etc.)

• Show/Hide visualization of the detection areas

• Adjust the detection parameters (determined by the used image processing algorithm)

• Enable/Disable the detection

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 14

Requirements - User Interface

Some requirements for the user interface have already been laid out in the previous section,
because the user should have the ability to configure all hardware settings in the graphical
interface but some more features were still needed:

• Opening a main frame supporting a Multiple Document Interface (MDI)

• Menubar and toolbar to open the different configuration and detection dialogs

• Live-preview of recorded images

• Possibility to save/load configurations

The decision for a Multiple Document Interface was made because of the different dialogs
needed. Aside of that the configuration does not had to be visible all the time, when the
detection is running, so creating separate windows was the best choice.

3.4.2 Image Processing Algorithms

Having summed up the requirements for camera configuration and user interface some more
thinking had to be done about how the detection itself should really work. One possibility
was to implement a small gesture recognition by using the optical flow to detect the user’s
finger when pressing the keyboard. Due to the limited time available for the thesis it was
decided to simplify the detection by focusing on the brightness of the object used to press the
virtual keys. Searching a do-it-yourself store resulted in using a pen with a small lamp in the
front often used in darker working areas. The light itself was bright enough to stand out from
the background of the recorded image (see Fig. 3.4).

Figure 3.4: Webcam Picture of the Light-pen used for Detection

Now the requirements for the detection algorithm could be narrowed down to the brightness
or color of an object. Live configuration of the parameters was a must-have, because light
conditions could differ from one room to another. Aside of that, adjustments should be
presented as easy as possible to the user resulting in the following additional features:

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 15

• Setting the lower detection brightness limit

• Setting the upper detection brightness limit

• Show/Hide visualization of the detection results

• Possibility to make independent settings for both cameras

Focusing on free detection algorithms an internet search turned up a project of David Bull
(MSc.) studying at the University of Essex called Java Colour Tracker [19].

After taking a computer vision course he implemented a simple modular application focussing
on the identification of objects by their color. Practically he used the program to enable a
Lego Mindstorms robot with a mounted webcam to chase a blue ball (see Fig. 3.5).

Figure 3.5: Colour Tracker: Detecting a blue Ball (Courtesy of David Bull)

The recorded image is segmented into regions of different color. As long the color of the
object to track is known, the regions, whose average color falls within a user specified range,
can be selected. Dealing with multiple objects of the same or similar color is tricky, so it was
decided, that the largest region will be tracked.

Once the region to be tracked is identified a bounding box for this area is created. The
calculated coordinates are then passed to the application to decide, if the threshold has been
crossed or which key region has been selected by the user.

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 16

Blob Coloring Algorithm

The algorithm1 itself is known as Blob coloring which takes care of finding regions of a specified
color in an image. It works by passing a „backwards L“ shaped template (see Fig. 3.6) over
the image from left to right and top to bottom.

Figure 3.6: Blob Coloring Algorithm: „backwards L“ shaped Template

This is done because it is needed to calculate the color/brightness-distance between the current
pixel and the one to the left, and between the current pixel and the one above. Such a „distance
between two pixels“ is defined based on the type of the image:

• Grayscale image: the distance is the difference of the two gray levels of the pixels

• RGB image: the distance is equal to the Euclidean distance in the RGB color space

• HSI image: the distance is the difference in hue or itensity

The Euclidean distance in the RGB color space ERGB between two pixels is defined as follows:

ERGB =
√

(r1 − r2)2 + (g1 − g2)2 + (b1 − b2)2

A pixel is considered to belong to a different region if the distance di between the adjacent
pixel is greater than a certain threshold T . There are four possible results, when comparing
the current pixel to its left neighbour and the one above:

1. (d1 > T) and (d2 > T) - The current pixel is different from both neighbours, so assign
it a new region.

2. (d1 < T) and (d2 > T) - The current pixel is different from the pixel above, but similar
to the left-hand one, so assign it to the same region as the left pixel.

3. (d1 > T) and (d2 < T) - The current pixel is different from the left-hand one, but similar
to the one above, so assign it the same region as the pixel above.

4. (d1 < T) and (d2 < T) - The current pixel is similar to both neighbours, so assign it to
the same region as the neighbours.

1 The description of the algorithm is based on informations by David Bull (see [19])

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 17

A problem occurs in case 4 when the current pixel is similar to both neighbours, but the regions
for the neighbouring pixels differ. In this situation it has become apparent that although both
the neighbouring pixels have different, regions the regions are in fact equivalent (see Fig. 3.7).
In the shown example the currently examined template is marked in red. Green pixels have
previously been assigned to region „1“ while blue pixels belong to region „2“. Now if the
current pixel is similar to both neighbours region „1“ and region „2“ are connected and the
same. A solution for this problem is presented in section 3.5.5 on page 23.

Figure 3.7: Blob Coloring Algorithm: Equivalent Region Problem

3.5 Implementation

By completing the design phase, all requirements to begin with the actual implementation
have been fulfilled. Further details would have to be worked out, while they arise during the
development.

3.5.1 Additional Software - log4j

During the beginning of the implementation the need for additional Java software packages
came up. Especially for logging-purposes which is important during the programming and
debugging phase of a project but also later on to easily inform the user about certain program
actions. Log4j [20] has been chosen due to the facts that it is freely available under the public
license and previous experiences have shown, that it is easy to set up and use.

Enabling logging at runtime is easily done without modifying the source code, because the
whole logging behaviour is controlled through a properties text file. The output-style is also
open to be changed to the programmer’s needs.

3.5.2 Camera Usage

Management of both cameras is taken care of by the CameraManager. This singleton serves
as mediator between the Java Media DirectShow (JMDS) (see Sect. 3.3.2) interface and the
main application. Camera classes take care of representing the external devices. Due to the

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 18

singleton nature of the CameraManager all classes can access the Camera objects, recording
single images or collecting video streams.

During the image processing (which is described in section 3.5.5) the recorded images must
be altered. In order to ease up this altering process, worker objects can be assigned to every
webcam via the CameraManager. As long as these workers implement a specific interface, they
can be added to the worker lists. Before an image is actually delivered to the application (i.e.
the live-preview window), the picture is handed over to all registered workers, so they can
perform the image processing. That way new workers can be added easily with the results
being displayed in the preview windows immediatly, when the worker is added to the list of
the active camera.

3.5.3 Configuration Management

The configuration management is centered around another singleton called ConfigManager.
This class is responsible for storing all parameters set for both cameras and the image pro-
cessing. All parameters are following the key=value scheme. I.e. overview.contrast is the
key with its associated contrast value. Configurations can be loaded from or saved to files,
which follow the same key=value style and can be edited with any text editor. An example
file containing the parameters for the threshold camera can be found in Listing 3.1.

Listeners can add themselves to the ConfigManager, if they want to get notified about changes
to the configuration. All config dialogs are storing their settings in the Manager, which causes
an update event to be sent to all registered listeners (i.e. other dialogs) so they can update
their data.

1 #
2 #Sun Apr 09 00:39:15 CEST 2006
3 threshold.camera=1
4 threshold.format=2
5 threshold.brightness=0
6 threshold.contrast=19
7 threshold.detect.border.high=58
8 threshold.detect.border.low=29
9 threshold.detect.brightness.high=255

10 threshold.detect.brightness.low=232

Listing 3.1: Implementation - Treshold Camera Config File

3.5.4 User Interface

The user interface centers around the main window VKMainFrame, which takes care of creating
and displaying all buttons, menus and the multiple document desktop area (see Fig. 3.8).

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 19

Figure 3.8: User Interface - Main Frame

Configuration - Threshold

This dialog is designed to configure the threshold camera and detection (see Fig. 3.9). It also
shows a live preview to control the settings (not visible in the dialog screenshot).

Figure 3.9: User interface - Configuration Threshold Dialog (excl. live-preview)

Camera Settings
Enables the user to select the Camera to use and their image Format (colors, resolution,
framerate).

Image Settings
In order to optimize the detection algorithms the Contrast and Brightness for the image
can be changed manually.

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 20

Color Detection Settings
These settings apply for the blob coloring algorithm of the threshold detection. Due to the
fact, that the problem has been reduced to look for a certain brightness, there are only two
sliders (not three as by using RGB colors: red, green, blue). One slider affects all three parts
of the RGB color to search for, i.e. RGB(1, 1, 1) or RGB(243, 243, 243) settings are possible.
A range of brightnesses to look for can be given by setting the Lower Border and Upper
Border.

Border Detection Settings
These Lower Border and Upper Border settings affect the size of the area, where the
detection takes place. Only when the user’s pen light crosses into this area and is detected,
an alarm is generated.

Visual Settings
The checkboxes enable or disable the visualization of the detection process. Enable Borders
show the set borders directly in the live-preview image, while Enable Detection colors all
pixels red, which are within the set brightness range. Enable Processor starts the detection
itself along with the blob coloring algorithm. A bounding box around the object in the preview
shows the detection result. The empty label below the last checkbox shows if an alarm has
been generated or not.

Configuration - Overview

Parts of this dialog to configure the overview camera match the previously described threshold
dialog. Additionally it offers the detection region management to actually map a region to a
certain key (see Fig. 3.10).

Figure 3.10: User Interface - Configuration Overview Dialog (excl. live-preview)

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 21

Detection Region Settings
This list shows all currently set detection regions. These are the actual keys the user can
hit on the virtual keyboard. Each region is defined by an id, a rectangle defining the area
and a mapped key. When clicking the Add button a new region can be appended by simply
dragging a rectangle with the mouse pointer in the preview window. The finished rectangle
is added to the list. The mapped key can be changed directly in the list by double-clicking
on the respective key field. The Delete button enables the user to remove a region by simply
selecting it in the live preview.

Visual Settings
As before these checkboxes show and hide the results of the detection process. Enable
Regions draws all set regions into the preview along with their assigned keys. Enable
Detection and Enable Processor match their counterparts in the threshold configuration
dialog.

3.5.5 Image Processing

The image processing is the heart of the application and takes care of the entire detection. It
is separated into two types of handler classes:

• Image workers, taking care of basic tasks like drawing the selected threshold area into
the preview.

• Image processors, these are using the blob coloring algorithm to detect the areas having
the selected brightness.

Image workers

As already mentioned image workers take care of the easy tasks. They have to imple-
ment the ImageWorker interface and can add themself to any cameras’ worker list via the
CameraManager. Currently there are two image worker classes present in the program:

BorderImageWorker
This worker is used in the threshold detection and visualizes the set threshold area by simply
drawing it into the preview image. Java offers the XORMode, which inverts the image drawn
into together with a set color. That way all image details are still visible, no matter what
color is used for drawing (see Fig. 3.11).

ColorImageWorker
The ColorImageWorker is used in both the threshold and overview detection dialogs to vi-
sualize the brightness, which should be detected. As shown in the config dialogs (see Sect.
3.5.4) a range can be given for the brightness detection. All pixels in the current image falling
within this range are colored red by the ColorImageWorker (see Fig. 3.12).

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 22

Figure 3.11: User Interface - BorderImageWorker Example

Figure 3.12: User Interface - ColorImageWorker Example

Image Processors

The image processors are responsible for the detection work itself and generating alarms if
needed. Both the threshold and the overview image processor make use of the blob coloring
algorithm (see 3.4.2).

Blob Coloring Algorithm

In implementing the blob coloring algorithm, a two-dimensional integer array is used whose
size is equal to that of the image (i.e. 640x480 pixels). This integer array contains the region
number for each pixel in the image. So for a given pixel its region number is equal to the
value at the same (x,y)-coordinate in the array.

Before the region assignment begins, all pixels in the image are scanned, if they belong to the
set color range or not, to speed up the following processing steps. If they are outside of the
given range, they are cleared from the image (coloring them black).

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 23

Following this pre-processing the „backwards L“ shaped template is used to determine the
distance of the current pixel to its left neighbour and the one above it (see Sect. 3.4.2). The
fact that all pixels of a different color have been set to black in the previous step is helping
in this stage. Calculating the Euclidean distance of the RGB colors is not needed anymore,
because only two color regions are present in the image now (black and the colors in the
set brightness range). So as soon as one pixel is black and the other one is not, they have
a distance of „1“. The four cases (see Sect. 3.4.2) are handled via if-statements with some
special cases, when there is no left or above neighbour (i.e. on the left side of the image or at
the upper border).

So far the implementation has not been difficult. More problems pose the fourth case of
the algorithm, where the current pixel is found to be the same as both neighbours with them
having different region numbers. In that case both regions are equivalent aside of their different
region numbers. One way to reflect these changes would be to renumber the entire region
array taking into account this new fact. However, this would obviously take a lot of processing
time as this situation may be encountered numerous times throughout the processing of the
image. A better method is to use an array, that maps a region to a different one (see Tab.
3.1).

Region 0 1 2 3 4
Equivalent Region 0 1 1 0 4

Table 3.1: Implementation - Blob Coloring Algorithm - Region equivalence Map

The example shows, that somewhere during the detection it has been discovered, that region
2 is equivalent to region 1 and that region 3 is equivalent to region 0. After scanning the
image the region array can be re-calculated, taking this equivalence map into account (i.e. all
region 2 pixels will be changed to region 1, etc.).

As stated by David Bull [19] this method is not very time efficient, because it has a drawback:
Using the table above what if it is later discovered that region 2 is also equivalent to region
0. Region 2 has already been mapped equivalent to region 1 so if it is changed to make it
equivalent to region 0 the information stating, that region 2 is equivalent to region 1 will be
lost. So before region 2 can be made equivalent to region 0, region 1 must first be mapped to
region 0.

In simple images this is not a problem, but more complex pictures with thousands of regions
raise the processing time of one single image up to 15 minutes on an AMD Athlon 2600 CPU
with 512MB RAM [19]. In order to process live webcam images this is unacceptable and a
solution must be found.

The implemented approach uses a Vector of TreeSets. Such a vector is a simple one-
dimensional resizable array and a treeset is an ordered set. This provides an almost tree-
like structure. Figure 3.2 shows the same example as figure 3.1, but this time with the tree
structure. Region 1, 2 and 3 are equivalent to region 0 with region 2 also being equivalent to
1.

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 24

Region Equivalent Regions
0
1 0
2 0,1
3 0
4

Table 3.2: Implementation - Blob Coloring Algorithm - Region equivalence Trees

In order to eliminate unnecessary information for the blob detection, the tree needs to be
flattened to always point to the lowest region (i.e. if region 3 points to 2, which points to 1
and 1 points to 0, then starting at region 3 its lowest equivalent region is 0. Propagating this
down the path sets 2 to 0 and then 1 to 0). An example is shown in figure 3.3.

Region Equivalent regions after flattening
0
1 0 0
2 1 0
3 2 0
4 3 0
5 0 0
6 3, 5 0
7
8 1 0
9 7 7
10 7 7
11 9 7
12 10 7

Table 3.3: Implementation - Blob Coloring Algorithm - Equivalence Table before and after
flattening

After flattening the equivalence tree and recalculating the region map, it was necessary to
find the biggest detected region, because it is likely, that this is the required blob. The search
is done by simply summing up all pixels of a certain region. Now a bounding box for the
biggest region could be created by looking for the smallest and largest (x,y)-coordinates of
the areas’ pixels.

Stopping the detection process at this point, assuming that the biggest region is the result of
the detection, caused some errors. As shown in figure 3.12 the biggest region is not always
the lamp on the pen but the reflection of the light on the surface. Due to that the blob must
be characterized by some parameters telling the algorithm if the found region is really the
blob which it should be looking for:

• Absolute ration between height and width of the blobs’ bounding box

• Minimum region size in pixels

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 25

As shown in figure 3.12 on page 22 the pen blob is clearly different from the blob caused
by the light reflection on the surface. Taking into account the absolute ratio Rwh seemed a
logical approach, because the pen light is more likely to form a circle than the reflection.

Rwh = | BoundingBoxwidth

BoundingBoxheight
|

Tests showed, that the resulting ratio Rwh varies a lot depending on the angle of the pen
light. So the parameter was weakened to a range of results. Settings for the threshold and
overview image processor had to be made independently for this parameter range due to the
different looking angles of the cameras.

Also a minimum region size was added, because small reflections of surrounding light sources
at other objects could cause an alarm even if the region was only a few pixels in size.

If a region is found, but not fitting to this parameters it is cleared from the region map and
the next biggest region is tested.

ThresholdImageProcessor

The image processor taking care of the threshold detection is changing the described imple-
mentation of the blob coloring algorithm only marginally. In order to speed up the detection
only the area, set by the user, is looked into for blobs, not the whole image. As soon as a
blob fitting to the parameters has been found an alarm is generated (see Fig. 3.13).

Figure 3.13: User Interface - ThresholdImageProcessor Example

OverviewImageProcessor

Aside from the blob coloring an additional step had to be taken in this processor after a region
and its bounding box have been found. The bounding box is intersected with all key-regions,

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 26

calculating the area, the detected blob is taking up of the key. This has to be done because
the blob never fills out a key in its full size and sometimes two key areas can be affected by the
light. Actually activated is the key, which has the largest intersection area with the detected
blobs bounding box (see Fig. 3.14).

Figure 3.14: User Interface - OverviewImageProcessor Example

3.6 Tests and Results

Having completed the programming work testing the application was the next step. To do
that, both the threshold and the detection image processor were combined in one window of
the user interface (see Fig. 3.15).

The threshold camera (on the right-hand side of the shown image) starts running in a lower
resolution (i.e. 176x144 pixels) to achieve a higher framerate and faster reaction to any
threshold crossings by the user. As soon as the user crosses into the threshold area with the
light pen and the blob is detected an alarm triggers the second camera. To avoid problems by
running both cameras at the same time (see Sect. 3.3), the threshold camera is disabled, while
the overview webcam takes one single picture at a higher resolution (i.e. 640x480 pixels). This
image is then used to detect the blob and determine, which key-area has been hit by the light
pen. As soon as the detection is complete the „pressed“ key is displayed in the text area and
the threshold camera is reactivated to wait for more key strokes.

While testing the virtual keyboard it was noticed, that switching from the threshold to the
overview camera recording a picture and switching back is taking about one to two seconds.
This is due to the fact that the threshold camera needs to be disabled and disconnected by
the software in order to access the overview camera. Additionally before it is actually possible
to take a picture from the camera a mandatory sleep of about 200 milliseconds is necessary,
else the delivered picture is just black because the camera did not have time to initialize. The
same time is needed on the way back, when reactivating the threshold camera.

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE VIRTUAL KEYBOARD 27

Figure 3.15: User Interface - Detection Test

This severly limits the input rate, but was not regarded as a problem due to the prototype
stage of this design. To give the user some feedback, when the threshold is crossed and the
detection of the key stroke is complete, a sound is played at the beginning and at the end of
the process. During that time the light pen has to be kept pointing onto the key to press,
else the overview camera might be too slow in taking a picture, before the pen has left the
keyboard area again.

Different light conditions around the keyboard have a great impact on the detection parame-
ters. Especially in brighter rooms setting the brightness detection range for the blob coloring
algorithm can be a bit tricky. Manual adjustment is always necessary before the keyboard
can be used.

Reflections on the keyboard surface are still a problem during the overview detection. Some-
times the light pen is as bright as the reflection from the surface. This confuses the detection
and results in either one large quadratic blob made up of the pen and the reflection or in no
detection at all, because the blob suddenly has the wrong width-to-height ratio. The blob
coloring algorithm itself has proven to be very adaptive, but still works somewhat slow with
higher resolution pictures (i.e. 352x288 pixels and above).

Aside of these drawbacks tests have been completed with a high success rate as long as the
described limitations are taken into account.

Chapter 4

Conclusions

This chapter concludes the semester thesis documentation, gives a review of the project and
sums up the results. Additionally some suggestions for future developments are given.

4.1 Review

In this thesis the main focus has been on portable keyboards and their development. Showing
the current state of development, giving examples and discussing their pro and cons provided
a good overview of that area.

Following the introduction a virtual keyboard has been designed and implemented starting
with a review of the technical basics and the camera hardware. Choosing a programming
language, development environment and setting up the cameras led to the design stage of the
application. Defining the requirements of both the application, user interface and the image
processing algorithms were a necessity, before the actual programming work could be started.

Implementing the camera connection, user interface and especially the blob coloring algorithm
made up most of the practical part. Also configuration of the cameras and the detection should
be as easy and as visible as possible within the application. Testing the virtual keyboard and
discussing the results completed this chapter.

4.2 Results

It has been shown that the old keyboard is far from being extinct. All current developments
have certain advantages, but also sometimes big drawbacks or limitations. The goal to discuss
these developments has been fulfilled.

28

CHAPTER 4. CONCLUSIONS 29

The created application showed the complexity of replacing normal keyboard strokes by other
detection methods. Connecting two wires together as it is done in every old keyboard is still
fast and not prone to errors. Still implementing a virtual keyboard using two cameras has
been challenging. Aside of the problems Microsoft Windows XP has by running two webcams
of the same type at the same time the image processing and detection proved to be interesting.

4.3 Future Work and Developments

As described in section 3.6 the tests showed some shortcomings and drawbacks of the proto-
type. Perhaps in the future, further developments in webcam drivers and camera access will
make it possible to run both cameras at the same time eliminating the long waiting period,
when taking a picture from the overview camera.

Focusing on a light pen also severly limits the user’s ability to control the keyboard. Most
likely a finger detection, using the optical flow, is better suited for such an application. Still,
using image processing as detection always needs a fast hardware to get results within an
acceptable time frame. So either the detection itself needs to be more simplified or replaced
by another approach (perhaps similar to the one used in the Celluon keyboard described in
section 2.2) or the algorithms need to be run on special-purpose hardware to speed them up.
The first variant is surely cheaper.

Bibliography

[1] C. Mehring, F. Kuester, S. Kunal Deep, M. Chen: „KITTY: Keyboard Independent Touch
Typing in VR“, IEEE Virtual Reality 2004.

[2] Canesta Inc., Homepage, April 2006, http://www.canesta.com/

[3] Canesta Inc., Celluon, April 2006, http://www.canesta.com/html/celluon.htm

[4] Stanford University Libraries & Academic Information Resources, SiliconBase - The
Mouse, April 2006, http://www-sul.stanford.edu/siliconbase/wip/control.html

[5] Eleksen, Homepage, April 2006, http://www.eleksen.com/

[6] Eleksen, Wireless fabric keyboard, April 2006, http://www.eleksen.com/index.asp?
page=products/wirelesskeyboard/keyboard_1.asp

[7] Hama GmbH & Co KG, Homepage, April 2006, http://www.hama.de/

[8] Hama GmbH & Co KG, Bluetooth Freedom Mini Keyboard , April 2006, http://www.
hama.de/portal/articleId*126221/action*2563

[9] Garmin, StreetPilot 2660, April 2006, http://www.garmin.de/
Produktbeschreibungen/StreetPilot2660.php

[10] Kiosk Mode, Homepage, April 2006, http://www.kiosk-mode.com/

[11] KITTY Tech, Keyboard Independent Touch Typing Technology, April 2006, http://www.
kittytech.com/

[12] teltarif.de, Siemens testet die virtuelle Tastatur, 22nd March 2005, http://www.
teltarif.de/arch/2005/kw12/s16621.html

[13] Logitech, QuickCam Express, April 2006, http://www.logitech.com/index.cfm/
products/details/DE/DE,CRID=2204,CONTENTID=5037

[14] Sun Microsystems, Java Technology, April 2006, http://java.sun.com/

[15] Sun Microsystems, Mustang: Java SE 6, April 2006, https://mustang.dev.java.net/

[16] Sun Microsystems, Java Media Framework API (JMF), April 2006, http://java.sun.
com/products/java-media/jmf/

30

http://www.canesta.com/
http://www.canesta.com/html/celluon.htm
http://www-sul.stanford.edu/siliconbase/wip/control.html
http://www.eleksen.com/
http://www.eleksen.com/index.asp?page=products/wirelesskeyboard/keyboard_1.asp
http://www.eleksen.com/index.asp?page=products/wirelesskeyboard/keyboard_1.asp
http://www.hama.de/
http://www.hama.de/portal/articleId*126221/action*2563
http://www.hama.de/portal/articleId*126221/action*2563
http://www.garmin.de/Produktbeschreibungen/StreetPilot2660.php
http://www.garmin.de/Produktbeschreibungen/StreetPilot2660.php
http://www.kiosk-mode.com/
http://www.kittytech.com/
http://www.kittytech.com/
http://www.teltarif.de/arch/2005/kw12/s16621.html
http://www.teltarif.de/arch/2005/kw12/s16621.html
http://www.logitech.com/index.cfm/products/details/DE/DE,CRID=2204,CONTENTID=5037
http://www.logitech.com/index.cfm/products/details/DE/DE,CRID=2204,CONTENTID=5037
http://java.sun.com/
https://mustang.dev.java.net/
http://java.sun.com/products/java-media/jmf/
http://java.sun.com/products/java-media/jmf/

BIBLIOGRAPHY 31

[17] java.net Projects, Java Media DirectShow (JMDS), April 2006, https://jmds.dev.
java.net/

[18] Eclipse.org, Homepage, April 2006, http://www.eclipse.org

[19] David Bull, Projects - Java - Colour Tracker, http://www.uk-dave.com/projects/
java/colourtracker.php

[20] Apache, Log4j project, April 2006, http://logging.apache.org/log4j/docs/index.
html

https://jmds.dev.java.net/
https://jmds.dev.java.net/
http://www.eclipse.org
http://www.uk-dave.com/projects/java/colourtracker.php
http://www.uk-dave.com/projects/java/colourtracker.php
http://logging.apache.org/log4j/docs/index.html
http://logging.apache.org/log4j/docs/index.html

Abbreviations

JMDS Java Media DirectShow [17]
JMF Java Media Framework

KITTY Keyboard Independent Touch Typing [11]
MDI Multiple Document Interface
VfW Video for Windows

Glossary

JMDS - Java Media DirectShow
JMDS provides a Java wrapper around the Microsoft DirectShow Capture API and exposes
them as a Java Media Framework DataSource.

JMF - Java Media Framework
The Java Media Framework is a Java library handling audio and video signals. The API
supports capturing from microphones and cameras and allows reading and writing of audio
and video files.

MDI - Multiple Document Interface
Multiple Document Interface describes a specific format of graphical user interfaces. MDI
offers the ability to open more than one document in a surrounding main frame. These
documents are opened within separate subwindows which can be freely arranged and resized
within the main frame.

VfW - Video for Windows
Video for Windows is a simple software interface for Microsoft Windows, enabling a program-
mer to encode and decode video signals as well as to read from framegrabber cards. It is the
standard interface for AVI.

	Abstract
	List of Figures
	List of Tables
	List of Sources
	1 Introduction
	1.1 Task
	1.2 Motivation
	1.3 Overview

	2 Latest Developments in Portable Keyboards
	2.1 Industrial Examples
	2.1.1 Foldable Keyboards
	2.1.2 Miniature Keyboards
	2.1.3 Touchscreens
	2.1.4 Glove Keyboard

	2.2 Celluon Projection Keyboard
	2.2.1 Technical Data
	2.2.2 Applications

	3 Implementation of a Prototype Virtual Keyboard
	3.1 Technical Basics
	3.1.1 Threshold Detection
	3.1.2 Overview Detection
	3.1.3 Camera Hardware

	3.2 Programming Language and Software
	3.3 Camera Setup
	3.3.1 Problems - Microsoft Windows XP
	3.3.2 Problems - Sun Java Virtual Machine

	3.4 Design
	3.4.1 Requirements Analysis
	3.4.2 Image Processing Algorithms

	3.5 Implementation
	3.5.1 Additional Software - log4j
	3.5.2 Camera Usage
	3.5.3 Configuration Management
	3.5.4 User Interface
	3.5.5 Image Processing

	3.6 Tests and Results

	4 Conclusions
	4.1 Review
	4.2 Results
	4.3 Future Work and Developments

	Bibliography
	Abbreviations
	Glossary

